Mediators of Ca2(+)-dependent secretion.

نویسندگان

  • A Chaudhry
  • R P Rubin
چکیده

Ca2+, an obligatory mediator of the secretory process, acts in concert with other second messengers that further amplify or inhibit the secretory response. In this overview, we will consider the relative roles of diacylglycerol (DAG), arachidonic acid, and cyclic AMP (cAMP) in modulating Ca2(+)-dependent secretion in nonexcitable cells. DAG, a product of phospholipase C (PLC)-catalyzed breakdown of phosphoinositides, stimulates protein kinase C. Ca2+ ionophores and phorbol esters (or DAG analogues) elicit a synergistic secretory response in the exocrine pancreas and parotid gland. These findings suggest that the complete activation of secretion requires stimulation of both Ca2(+)-dependent and protein kinase C-dependent pathways. Hydrolysis of phospholipids can also lead to the liberation of arachidonic acid in secretory cells. Endogenously generated arachidonic acid inhibits polyphosphoinositide synthesis in exocrine pancreas, leading to inhibition of agonist-induced IP3 formation, Ca2(+)-mobilization and amylase secretion. By contrast, arachidonic acid and its metabolites stimulate PLC in the rabbit peritoneal neutrophil, causing Ca2(+)-mobilization and lysosomal enzyme secretion. Arachidonic acid can thus serve as a positive or negative feedback regulator of secretion induced by Ca2(+)-mobilizing agonists. Finally, in the parotid gland, stimulation of amylase secretion by norepinephrine, the physiological mediator, which stimulates both the alpha and beta adrenoceptors, requires the interaction of both Ca2+ and cAMP pathways to produce a full secretory response. These studies, taken together, indicate that phosphoinositide and cAMP-dependent pathways play coordinate roles in signal transduction, leading to the Ca2(+)-mediated secretion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions of intracellular mediators of amylase secretion in permeabilized pancreatic acini.

Mouse pancreatic acini were permeabilized with streptolysin O to investigate amylase secretion stimulated by various intracellular mediators and the kinetics of secretion as a function of temperature. Amylase secretion was temperature dependent in that the initial rate of Ca2(+)-stimulated secretion increased with increasing temperature. In addition, there was no enhancement of Ca2(+)-stimulate...

متن کامل

Voltage-independent calcium channels mediate slow oscillations of cytosolic calcium that are glucose dependent in pancreatic beta-cells.

Pancreatic beta-cells and HIT-T15 cells exhibit oscillations of cytosolic calcium ([Ca2+]i) that are dependent on glucose metabolism and appear to trigger pulsatile insulin secretion. Significantly, differences in the pattern of this [Ca2+]i oscillatory activity may have important implications for our understanding of how glucose homeostasis is achieved during the feeding and fasting states. Wh...

متن کامل

Changes in expression of klotho affect physiological processes, diseases, and cancer

Klotho (KL) encodes a single-pass transmembrane protein and is predominantly expressed in the kidney, parathyroid glands, and choroid plexus. Genetic studies on the KL gene have revealed that DNA hypermethylation is one of the major risk factors for aging, diseases, and cancer. Besides, KL exerts anti-inflammatory and anti-tumor effects by regulating signaling pathways and the expression of tar...

متن کامل

Activity-Dependent Dendritic Arborization Mediated by CaM-Kinase I Activation and Enhanced CREB-Dependent Transcription of Wnt-2

Members of the Wnt signaling family are important mediators of numerous developmental events, including activity-dependent dendrite development, but the pathways regulating expression and secretion of Wnt in response to neuronal activity are poorly defined. Here, we identify an NMDA receptor-mediated, Ca2+-dependent signaling pathway that couples neuronal activity to dendritic arborization thro...

متن کامل

Thiophosphorylation causes Ca2+-independent norepinephrine secretion from permeabilized PC12 cells.

Adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) was used to examine the role of phosphorylation in the regulation of norepinephrine secretion by digitonin-permeabilized PC12 cells. While most kinases will use ATP gamma S to thiophosphorylate proteins, thiophosphorylated proteins are relatively resistant to dethiophosphorylation by protein phosphatases. Norepinephrine secretion by permeabilize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 84  شماره 

صفحات  -

تاریخ انتشار 1990